Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Pigment & Resin Technology ; 52(4):490-501, 2023.
Article in English | ProQuest Central | ID: covidwho-20242763

ABSTRACT

PurposeThis study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.Design/methodology/approachPrepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.FindingsThe obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.Originality/valueThe new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.

2.
Journal of Chemistry ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2320526

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a well-established drug target for rational drug design of COVID-19 inhibitors. To address the serious challenge of COVID-19, we have performed biochemical inhibition screens with recombinantly expressed SARS-CoV-2 main protease (Mpro). A fluorescent assay was used to identify the flavonoid isoquercitrin as an Mpro inhibitor. Both isoquercitrin encapsulated in γ-cyclodextrin (inclusion complex formulations) and alone inhibited SARS-CoV-2 Mpro. For isoquercitrin, a Ki value of 32 μM (IC50 = 63 μM) was obtained. Isoquercitrin γ-cyclodextrin inclusion complex formulations additionally inhibited Zika virus NS2B-NS3pro leading to an IC50 value of 98 μM. Formulations containing the other flavonoid compounds diosmetin-7-O-glucoside, hesperetin-7-O-glucoside, and naringenin-7-O-glucoside did not inhibit SARS-CoV-2 Mpro. Steady-state kinetics indicate that the inhibition mechanism of Mpro by isoquercitrin is potentially competitive. Molecular modeling studies carried out with MM/PBSA confirm the likely modes of isoquercitrin binding to both proteases. These modeling results can be used in the development of structural analogs of isoquercitrin with better inhibitory profiles and potential candidates for anti-coronavirus drugs. Since the targeted proteases are essential for viral activity, the delivery isoquercitrin-cyclodextrin inclusion complex formulations could be of great interest for the development of future antiviral drugs to target intracellular virus proteins or other components.

3.
Minerals ; 13(4):505, 2023.
Article in English | ProQuest Central | ID: covidwho-2294950

ABSTRACT

Stoneware is a ceramic material with low porosity and high mechanical properties, such as the modulus of rupture. It is essentially made of clay, feldspar and quartz and is sintered to create a mixture of glass and crystalline phases. With the projected growth rate of the global ceramics market size and the country's development plan for 2023–2028, it is imperative that alternative raw materials for the manufacture of ceramic products be sourced so that the importation of these materials, such as feldspar, be minimized, if not eliminated. Cinder in the Philippines is mainly used as a filling material in pavements and residential areas. In this study, this resource is utilized as partial and full replacement of feldspar in a typical ternary diagram for stoneware production. Bars were formed from different formulations by the slip casting method and were sintered at 1200 °C. Physical and mechanical properties of the bars, such as shrinkage, loss on ignition, water absorption, apparent porosity and modulus of rupture were determined. Thermo-physical analyses were also carried out on the raw materials and on formulated powders. Meeting the requirements of the various quality standards for ceramics, the partial replacement of feldspar with black cinder (LF, LFBQ and LFBH) is feasible for wall and roof applications while full replacement of feldspar with black cinder (LB) is suitable for wider use as wall, floor, vitrified, industrial and roof tiles.

4.
Curr Pharm Des ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2301574

ABSTRACT

BACKGROUND: Pulmonary microbial infection is mainly caused by microbes like atypical bacteria, viruses, and fungi, on both the upper and lower respiratory tracts. The nanotechnology-based treatment approach is one of the contemporary needs to combat different pulmonary infections. AIM: The main aim of the study is to explore all pulmonary infectious diseases and to compare the advanced and novel treatment approaches with the conventional methods which are available to treat the infections. MATERIAL AND METHOD: This work sheds light on pulmonary infectious diseases with their conventional and present treatment approaches along with a focus on the advantageous roles of nano-based formulations. In the literature, it has been reported that the respiratory system is a key target for various infectious diseases and various challenges are arising in the treatment of pulmonary infections. RESULT: The present review article describes the global situation of pulmonary infections and different strategies which are being available for their management, along with their limitations. The article also highlights the advantages and different examples of nanoformulations currently combating the limitations of conventional therapies. CONCLUSION: The content of the present article further reflects a summary of recently published research and review works on pulmonary infections, conventional methods of treatment with their limitations, and the role of nano-based approaches to combat the existing infectious diseases which will jointly help the researchers to produce effective drug formulations with desired pharmacological activities.

5.
Polycyclic Aromatic Compounds ; 42(6):3792-3808, 2022.
Article in English | CAB Abstracts | ID: covidwho-2247829

ABSTRACT

The novel coronavirus disease 2019 (Covid-19) is a mutating and recombining pandemic that potentially spreading through an infected person in droplet-generated forms that have affected more than 200 countries and endanger the entire globe. There is no clear strategy for the care of COVID-19 cases. Moreover, experts across the globe are working actively to develop medicinal or anti-virus drugs. On the basis of recent clinical findings and recommendations, the study examined a variety of new medications that have shown antiviral activity against SARS-CoV-2, among other drugs, antimalarial medications Chloroquine (CQ) and Hydroxychloroquine (HCQ) have gained significant publicity to have promising effects against SARS-CoV-2. Linking a bioactive substance to a biocompatible polymer typically provides various concerns, such as improved drug solubilization, improved modification, precise restriction, and controlled discharge. An enormous number of medical analyses have confirmed that the characteristics of medical drugs have a nearby connection with their atomic structure. Medication properties can be acquired by considering the atomic structure of relating drugs. The calculation of the topological index of a medication structure empowers researchers to have a superior comprehension of the physical science and bio-organic attributes of drugs. Ev-degree and ve-degree based topological indices are two novel degrees based indices as of late defined in graph theory. Ev-degree and ve-degree based topological indices have been defined as corresponding to their relating partners. In this paper, we have computed topological indices based on ev-degree and ve-degree for the Hydroxyethyl Starch and Hydroxychloroquine (HCQ-HEC) bioconjugate molecular structure.

6.
Polycyclic Aromatic Compounds ; 42(8):5322-5335, 2022.
Article in English | CAB Abstracts | ID: covidwho-2264303

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan and it has rapidly spread to almost all parts of the world. In the field of Medical Science, concerning the definition of the topological index on the molecular structure and corresponding medical, biological, chemical, pharmaceutical properties of drugs can be studied by the topological index calculation. In this paper, we compute some of the general topological properties of chloroquine and hydroxychloroquine used to inhibit the outbreak of coronavirus disease-19. The results in this paper may be useful in finding new drug and vaccine for the treatment and prevention of COVID-19.

8.
Ther Deliv ; 12(2): 111-117, 2021 02.
Article in English | MEDLINE | ID: covidwho-2230802
9.
J Microencapsul ; 40(4): 217-232, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2230983

ABSTRACT

Azithromycin is an antibiotic proposed as a treatment for the coronavirus disease 2019 (COVID-19) due to its immunomodulatory activity. The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there was an improvement in dispersibility of the chitosan-related formulations. It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggested the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19.


Subject(s)
COVID-19 , Chitosan , Nanoparticles , Humans , Azithromycin , Powders , Administration, Inhalation , COVID-19 Drug Treatment , Respiratory Aerosols and Droplets , Particle Size
10.
Phytomed Plus ; 2(3): 100286, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2232862

ABSTRACT

BACKGROUND: While Molnupiravir and Paxlovid have recently been approved for use in some countries, there are no widely available treatments for COVID-19, the disease caused by SARS-CoV-2 infection. Herbal extracts have been used to treat respiratory clinical indications by Ayurvedic medicine practitioners with minimal adverse reactions and intense research efforts are currently under way to develop some of these formulations for COVID-19 treatment. METHODS: Literature search for in silico, in vitro, in vivo, and clinical studies on the topic of Ayurvedic formulations for potential COVID-19 treatment, in order to present the current state of current knowledge by integrating information across all systems. RESULTS: The search yielded 20 peer reviewed articles on in silico studies examining the interaction of phytoconstituents of popular Ayurvedic formulations with SARS-CoV-2 components and its receptors; five articles on preclinical investigations of the ability of selected Ayurvedic formulations to inhibit functions of SARS-CoV-2 proteins; and 51 completed clinical trials on the efficacy of using Ayurvedic formulations for treatment of mild to moderate COVID-19. Clinical data was available from 17 of the 51 trials. There was a considerable overlap between formulations used in the in silico studies and the clinical trials. This finding was unexpected as there is no clearly stated alignment between studies and the traditional pathway to drug discovery- basic discovery leading to in vitro and in vivo proof of concept, followed by validation in clinical trials. This was further demonstrated in the majority of the in silico studies where focus was on potential antiviral mechanisms, while the clinical trials were focused on patient recovery using oral treatments. In all 17 clinical trials where data was available, Ayurvedic treatments lead to a shorter period to recovery in participants with COVID-19. CONCLUSION: The most commonly used Ayurvedic treatments for management of respiratory symptoms associated with SARS-CoV-2 infection appear to have prophylactic and/or therapeutic properties. It would be of particular interest to assess synergistic and concomitant systemic effects and antiviral activities of individual phytoconstituents and their combinations in the Ayurvedic treatments.

11.
J Pharm Sci ; 112(5): 1345-1350, 2023 05.
Article in English | MEDLINE | ID: covidwho-2221489

ABSTRACT

Vaccines against SARS-CoV-2 have transformed the course of the COVID-19 pandemic with more than 30 authorizations. More than 2 billion people have been vaccinated with these vaccines developed on very different manufacturing platforms. We have reviewed the unprecedented work done in various aspects of the authorized vaccines and listed three potential improvements: 1) long-term stability at room-temperature conditions; 2) suitability for diverse populations such as infants, elderly, immune-compromised, and those with pre-existing or ongoing diseases; and 3) ability to act against different strains. In this article, we have discussed the current status of COVID-19 vaccines with respect to 1) diversity (strength and breadth) of initial immune responses and long-term immune memory; 2) prime-boost combinations that induce protection against variants; and 3) breakthrough infections. Further, we have listed host, product (critical quality attributes), and viral pathogenic factors that contribute to safety, efficacy, and effectiveness of vaccines. In addition, we have elaborated on the potential to (develop models and) determine the immune correlates that can predict long-term immune memory. The graphical representation of the abstract is provided as Fig. 1.


Subject(s)
COVID-19 , Vaccines , Aged , Humans , Infant , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics , SARS-CoV-2
12.
2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2213255

ABSTRACT

Amidst the recent COVID-19 pandemic, the education industry was forced to completely flip its very traditional self to an online system in order to thrive and ensure continuity of operations. This moved academics and support staff to rely on system-captured data to monitor performance and plan for the future. The purpose of this research is to study the importance of big data (captured by university systems over time) and its crucial role in policy & strategy making in the higher education sector. 10 pilot interviews were conducted with education industry practitioners which indicated that awareness regarding the importance of big data analysis exists, however, there is a need of in-depth knowledge to better support this sector. The results indicate the current state/status of implementation and challenges faced by the higher education sector wherein a clear need of having a data management strategy for optimizing the use of big data is being identified. © 2022 IEEE.

13.
Emerg Infect Dis ; 29(1)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2215190

ABSTRACT

Increasing nonzoonotic human monkeypox virus (MPXV) infections urge reevaluation of inactivation strategies. We demonstrate efficient inactivation of MPXV by 2 World Health Organization‒recommended alcohol-based hand rub solutions. When compared with other (re)emerging enveloped viruses, MPXV displayed the greatest stability. Our results support rigorous adherence to use of alcohol-based disinfectants.

14.
Viral Immunol ; 35(10): 663-672, 2022 12.
Article in English | MEDLINE | ID: covidwho-2188178

ABSTRACT

Several inactivated SARS-CoV-2 vaccines have been approved for human use, but are not highly potent. In this study, different formulations of the inactivated SARS-CoV-2 virus were developed in Alum, Montanide 51VG, and Montanide ISA720VG adjuvants, followed by assessment of immune responses. The SARS-CoV-2 virus was inactivated with formalin and formulated in the adjuvants. BALB/c mice were immunized subcutaneously with 4 µg of vaccines on days 0 and 14; (IL-4) and (IFN-g), cytotoxic T lymphocyte (CTL) activity, and specific immunoglobulin G (IgG) titer and IgG1, IgG2a, and IgG2a/IgG1 ratio, and anti-receptor-binding domain (RBD) IgG response were assessed 2 weeks after the final immunization. Immunization with SARS-CoV-2-Montanide ISA51VG showed a significant increase in the IFN-γ cytokine versus SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0033). Cytokine IL-4 response in SARS-CoV-2-Alum group showed a significant increase compared with SARS-CoV-2-Montanide ISA51VG, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0206). In addition, SARS-CoV-2-Montanide ISA51VG vaccine induced the highest IFN-γ/IL-4 cytokine ratio versus other groups (p < 0.0004). CTL activity in SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA720VG groups showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0075). Specific IgG titer in SARS-CoV-2-Montanide ISA51 VG and SARS-CoV-2-Montanide ISA720VG showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0143). Results from specific IgG1and IgG2a in SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA51VG, and SARS-CoV-2-Montanide ISA720VG vaccine showed a significant increase compared with phosphate buffer saline (PBS) group (p < 0.0001), but SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA 720VG groups showed the highest IgG2a/IgG1 ratio and a significant increase compared with SARS-CoV-2-Alum group (p < 0.0379). Moreover, inactivated SARS-CoV-2+Alum and SARS-CoV-2-Montanide ISA 720VG groups demonstrated a significant increase in anti-RBD IgG response versus the SARS-CoV-2-Montanide ISA51VG group. It seems that the type of vaccine formulation is a critical parameter, influencing the immunologic pattern and vaccine potency and human-compatible oil-based adjuvants were more potent than Alum adjuvant in the vaccine formulation.


Subject(s)
Adjuvants, Immunologic , COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Adjuvants, Immunologic/pharmacology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , Cytokines , Immunity , Immunoglobulin G , Interferon-gamma , Interleukin-4 , Mice, Inbred BALB C , SARS-CoV-2
15.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163530

ABSTRACT

Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.


Subject(s)
Alkaloids , Benzylisoquinolines , COVID-19 , Humans , Benzylisoquinolines/pharmacology , Alkaloids/chemistry , Antiviral Agents/pharmacology
16.
RNA Technologies ; 13:17-40, 2022.
Article in English | Scopus | ID: covidwho-2059694

ABSTRACT

Remarkable advances in mRNA and ionizable lipid-based carrier innovations have allowed the unprecedented speed of development for these technologies as vaccines to prevent SARS-CoV2 disease. Their validation in the field of prophylaxis now paves the way for other infectious diseases indications and manufacturing advantages over certain traditional vaccine technologies. In this chapter, platform advances and critical quality attributes important for vaccination will be discussed and related to SARS-CoV2 vaccines for which field efficacy data are available. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

17.
Journal of Experimental Biology and Agricultural Sciences ; 10(4):737-742, 2022.
Article in English | CAB Abstracts | ID: covidwho-2040524

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS - CoV2), the causative viral pathogen of the COVID-19 pandemic belongs to the family of Coronaviruses which are positive single stranded RNA viruses. The scientific fraternity has developed and developing various types of vaccines for prevention against COVID-19, such as inactivated virus vaccines, mRNA vaccines, replicating vector protein subunit vaccines, etc., Out of which ten vaccines namely Novovax, Covovax (protein subunit vaccines), Pfizer BNT16b2, Moderna mRNA 1273 (mRNA vaccines), Johnson & Johnson Ad26, Cov2.S, Astrazeneca AZD1222, Covishield (non-replicating viral vector vaccines), Covaxin, Sinopharm BBIBP-CorV, CoronoVac (inactivated vaccines) have been approved for clinical use by WHO. There is an urgent need for SARS-CoV2 specific therapeutics for the treatment of COVID-19 as there is the emergence of various variants such as Alpha, Beta, Gamma, Delta, Omicron, etc. The emergence of variants that possesses immune evading property and spike protein mutation have increased infectivity and more pathogenicity which impelled the need to develop various therapeutics for the treatment of COVID-19. This review compiles the information about potential antiviral candidates in preclinical trials intended for the treatment of COVID-19. The clinical development of such antivirals will be very crucial for the treatment of COVID-19 and also to curb the spread as the present scenario depends on the development of effective prophylactic vaccines.

18.
Applied Sciences ; 12(16):8361, 2022.
Article in English | ProQuest Central | ID: covidwho-2023103

ABSTRACT

In the current market, there is a growing interest in traditional herbal nutraceuticals. Therefore, herbal formulations have re-emerged as products with sought-after nutraceutical and disease-preventing properties. The health-promoting effects of herbal bioactives are attributed to the active phytoconstituents of these plants. Thus, the aim of the present study was to evaluate the putative nutraceutical effectiveness of the preparations of ten herbs (chamomile, purple coneflower, lemon verbena, pennyroyal, spearmint, oregano, marjoram, headed savory, sea buckthorn, and St. John’s wort) by combining in silico techniques and LC-MS/MS analysis. The binding potential of the selected phenolic compounds, according to literature and web databases, was investigated by using molecular target prediction tools. Aldose reductase (AR), an enzyme of polyol pathway which is related to hyperglycemic-induced pathologies, emerged as the most promising molecular target. The molecular docking results showed that rosmarinic acid, caftaric acid, naringenin, and quercetin presented the highest binding affinity. In a further step, the phytochemical profile of the examined infusions, obtained by LC-MS/MS analysis, revealed that the abovementioned compounds were present, mainly in the herbs of the Lamiaceae family, designating headed savory as the herbal infusion with possible significant inhibitory activity against AR.

19.
Current Pharmaceutical Analysis ; 18(7):732-738, 2022.
Article in English | ProQuest Central | ID: covidwho-2002401

ABSTRACT

Aims: This study aims to determine the volatile chemical profile of ethanol-based hand sanitizer marketed in Brazil by HS-SPME/GC-MS. Background: Ethanol-based hand sanitizer has been used to protect against coronavirus disease (COVID-19). In general, these formulations are prepared using a carbomer. In 2020 and 2021, the production of hand sanitizer has increased due to the COVID-19 epidemic. Therefore, it is important to know the composition of this formulation because certain molecules present in some alcoholic mixtures can cause health problems. Methods: Ethanol-based hand sanitizer, AL1, AL2, BL1, CL1, DL1, EL1, FL1, and GL1 (ethanol derivative of fuel station), was purchased from manufacturers commercialized in Araguaína-TO and analyzed by HS-SPME/GC-MS for determining volatile chemical profile. Results: The analyses showed different compositions for the ethanol-based hand sanitizers. Samples AL1 and AL2 contained isopropyl alcohol, ethyl acetate, benzene, ethane-1,1-diethoxy, limonene, and other compounds. Linear alkanes were also detected. Only ethyl acetate and ethane-1,1-diethoxy were detected in CL1, in addition to ethanol. Thus, it is the most suitable sample among those analyzed. The presence of benzene, alkanes, and other hydrocarbons may be associated with the use of fuel ethanol to prepare these sanitizers, as shown in the sample GL1. Benzene, xylene, and toluene were found in FL1. This sample is the most contaminated among those analyzed. Conclusion: The chemical profile of commercial ethanol-based hand sanitizer from eight different samples sold in Araguaína-Brazil was established by GC-MS. Compounds like benzene and other alkanes were found in some samples. These results suggested possible contamination by alcohols unqualified in producing pharmaceutical substances. These analyzes are particularly relevant due to the pandemic situation to avoid COVID-19 proliferation. Benzene and other alkanes are harmful to human health and should be avoided in hand sanitizer production.

20.
Applied Sciences ; 12(15):7500, 2022.
Article in English | ProQuest Central | ID: covidwho-1993920

ABSTRACT

(1) Background: Essential oil from Vitex negundo is known to have repellent and insecticidal properties toward the Anopheles gambiae and this is linked to its monoterpene and sesquiterpene content. In this work, an effort is made to delineate the constitution of V. negundo essential oil (VNEO) and their interaction with odorant-binding proteins (OBPs) of A. gambiae and hence access its repellent efficiency as cost-effective and safer malaria vector control alternatives. (2) Methods: Anopheles species authentication was performed by genomic DNA analysis and was subjected to behavioral analysis. GC-MS profiling was used to identify individual components of VNEO. Anopheles OBPs were obtained from the RCSB protein data bank and used for docking studies. Determination of ligand efficiency metrics and QSAR studies were performed using Hyper Chem Professional 8.0.3, and molecular dynamics simulations were performed using the Desmond module. (3) Results: GC-MS analysis of VNEO showed 28 compounds (monoterpenes, 80.16%;sesquiterpenes, 7.63%;and unknown constituents, 10.88%). The ligand efficiency metrics of all four ligands against the OBP 7 were within acceptable ranges. β-selinene (−12.2 kcal/mol), β-caryophellene (−9.5 kcal/mol), sulcatone (−10.9 kcal/mol), and α-ylangene (−9.3 kcal/mol) showed the strongest binding affinities for the target proteins. The most stable hydrophobic interactions were observed between β-selinene (Phe111 and Phe120), Sulcatone (Phe54 and Phe120), and α-ylangene (Phe111), while only sulcatone (Tyr49) presented H-bond interactions in the simulated environment. (4) Conclusions: Sulcatone and β-caryophyllene presented the best log p values, 6.45 and 5.20, respectively. These lead phytocompounds can be used in their purest as repellent supplement or as a natural anti-mosquito agent in product formulations.

SELECTION OF CITATIONS
SEARCH DETAIL